European aspen and hybrid aspen under changing environment : Leaf traits, growth and litter decomposition
نویسندگان
چکیده
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas – which correspond closely with the main drivers of global change – can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.
منابع مشابه
Effect of Litter Quality on Leaf-Litter Decomposition in the Context of Home-Field Advantage and Non-Additive Effects in Temperate Forests in China
Litter quality is often considered the main driver of rates of decomposition. Litter decomposes faster in its home environment than in any other environment, which is called the home-field advantage (HFA). However, evidence for this phenomenon has not been universal. In addition, litter mixtures of different species can induce a non-additive effect (NAE) on decomposition processes. However, the...
متن کاملAssessing the Effect of Leaf Litter Diversity on the Decomposition and Associated Diversity of Fungal Assemblages
Although the effect of litter mixture on decomposition has been well documented, few studies have examined the relationships between richness and relative abundance of leaf species in litter mixture and changes in universal fungal communities during the decomposition process in temperate forests. In this study, we used the litterbag method and included three leaf litter species, i.e., aspen (Po...
متن کاملGenetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen.
Intensive forestry systems and breeding programs often include either native aspen or hybrid poplar clones, and performance and trait evaluations are mostly made within these two groups. Here, we assessed how traits with potential adaptive value varied within and across these two plant groups. Variation in nine hydraulic and wood anatomical traits as well as growth were measured in selected asp...
متن کاملCan Physiological and Anatomical Characters Be Used for Selecting High Yielding Hybrid Aspen Clones?
Stomatal, CO2 exchange parameters and several leaf and growth traits were recorded in a fi ve-year-old hybrid aspen clone trial. The fi eld trial consisted of four aspen hybrid clones (Populus tremula L. × P. tremuloides Michx.) and one local Populus tremula seedling source. The mean estimated height of hybrid aspen clones was 1.6 times higher than for P. tremula. Similarly, basal diameter was ...
متن کاملGenetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)
We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significan...
متن کامل